$\qquad$

## Reintroducing GUSS SPH4C

GUSS has a procedure for solving problems.
First, he identifies his $\qquad$ .

Then he identifies his $\qquad$ .

Next, he $\qquad$ an equation that relates his Givens and his Unknown, rearranging it for the Unknown if necessary.

Finally, he substitutes his Givens into the equation and $\qquad$ for his Unknown. Identify the Givens and the Unknown in the following problem:

A machine did 240 J of work in 60 s . Calculate its power output.

When you Select an equation, you are selecting the equation that $\qquad$
$\qquad$ -.

The equation that contains $\mathrm{W}, \Delta \mathrm{t}$, and P is:

This equation does not need to be rearranged. It is already $\qquad$ .
$\qquad$ .

But what if you needed to solve for W or $\Delta t$ ?
If you want to solve for W , you need to $\qquad$ as the W. To get rid of a division, use multiplication:

$$
\begin{aligned}
& P=\frac{W}{\Delta t} \\
& P \square=\left(\frac{W}{\Delta l}\right) \square \\
& P \square=\square \\
& \text { or } W=\square
\end{aligned}
$$

If you want to solve for $\Delta t$, you first need to get it out of the on the same side as it.
and then get rid of anything $P=\frac{W}{\Delta t} \rightarrow P \Delta t=W$
To get rid of multiplication, use division.


Finally substitute your Givens $\qquad$ and Solve.
Your solution must also contain units!

More Practice with GUSS Equation Bank

$$
\begin{aligned}
& v=\frac{\Delta d}{\Delta t} \quad v=\text { speed } \\
& \Delta d=\text { distance } \\
& \Delta t=\text { time } \\
& F=m a \quad F=\text { force } \\
& m=\text { mass } \\
& a=\text { acceleration } \\
& E_{k}=\frac{1}{2} m v^{2} \quad E_{k}=\text { kinetic energy } \\
& m=\text { mass } \\
& v=\text { speed } \\
& p=\frac{F}{A} \\
& p=\text { pressure } \\
& F=\text { force } \\
& A=\text { area } \\
& V=I R \quad V=\text { voltage } \\
& I=\text { current } \\
& R=\text { resistance }
\end{aligned}
$$

Identify the Givens and Unknowns and Select an equation for each of the following problems. (Use the Equation Bank on the previous page.)

1. A circuit with a resistance of $4 \Omega$ is connected to power supply with a voltage of 6 V . Calculate the circuit through the circuit.

Givens: Select:

Unknown:
2. A force of 15 N is applied to a surface area of $1 \mathrm{~m}^{2}$. Calculate the pressure.

Givens:
Select:

Unknown:
3. An object of mass 4 kg has a net unbalanced force of 12 N [East] acting on it. Calculate the acceleration of the object.

Givens:
Select:

Unknown:
4. Work is done on an object of mass 2 kg to increase its kinetic energy to 18 J . Calculate the speed of the object.

Givens:
Select:

Unknown:

1. Rearrange $v=\frac{\Delta d}{\Delta t}$ to solve for $\Delta d$. (Show your work!)

2. Rearrange $F=m a$ to solve for $a$.

or $a=\square$
3. Rearrange $p=\frac{F}{A}$ to solve for $A$.

$$
p \square=\left(\frac{F}{A}\right) \square
$$

$$
p \square=\square
$$

$$
\frac{p \square}{\square}=\frac{F}{\square}
$$

$$
A=\square
$$

4. Rearrange $V=I R$ to solve for $R$.
